

MakeRom Dream S.A.S.

Rev. Sept 22, 2022 1 © 2022 Dream S.A.S.

MakeRom

Aim
It generates the ROM content files for production, with the checksum information required by TestRom procedure
of LibSys (read SamVS-C System Library.pdf documentation) and _NFM_TestNAND procedure of LibNFM.

Input
It takes as input a description text file, which sets the file(s) to use, what destination address...
Limitation: each file size must not be greater than 4GB-1. Cut it in pieces if greater.
The description text file has the following content:

Directives

$output NameFile It generates several files, named NameFile00.bin NameFile01.bin…
In case of $octal used, NameFile00L.bin, NameFile00H.bin, …
Default value ROMfile.

$devicesize 0x400000 Set the ROM device size in words: 0x200000 for a 32Mbits. Default value
0x200000

$programableamount 80 % amount of device to receive data. Default value 100; 80 in case of NandFlash.
$pattern 0x600D Set the word value to use for gap/padding area(s). Default value 0xFFFF.
$target 2553 Specify the target name: 3516 (SAM3516), 3716 (SAM3716), 3816 (SAM3816),

3703 (SAM3703), 2533 (SAM2533), 2553 (SAM2553), 2634 (SAM2634), 2635
(SAM2635), 2653 (SAM2653), 2655 (SAM2655), 3103 (SAM3103), 3303
(SAM3303), 3108 (SAM3108), 3308 (SAM3308), 5704 (SAM5704), 5716
(SAM5716), 5808 (SAM5808), 5916 (SAM5916), 5504 (SAM5504), 5708
(SAM5708)…
Default value 5916 for SAM5916

$directory Nameofdirectory Specify a directory to apply to the following common entries. Use as many time as
needed.

$octal Memory devices are used by pair: two 8bits values read from two memories
generate one 16 bits value.

$merge Join together each element, adding padding between if needed (value set by
$pattern directive): it then does not care neither of device size nor start offset nor
target nor checksum nor octal mode.

$nandflash spareinclude To generate file(s) with DREAM ECC for NandFlash device external programmer.
By default, it generates a file (*.img) for User data area and a file (*.spr) for Spare
data area. Option ‘spareinclude’ generates one file with User data area and Spare
data area interlaced.

$nandflashpageusersize 0x400 To define in word the size of the User data area of the NandFlash page.
Default value 0x400 (1k words).

$nandflashpagesparesize 0x70 To define in word the size of the Spare data area of the NandFlash page.
Default value 0x70 (112 words).

$nandflashpage4block 0x40 To define the number of page inside a block of the NandFlash.
Default value 0x40 (64 pages per block).

Common entry

Namefile AbsoluteAddress OffsetInFile Length

OffsetInFile (optional) the word offset from the file NameFile. Default value 0,
Length (optional) the word length from the file NameFile.By default the size of the file or (‘size of file’

–offsetInFile) if OffsetInFile defined.
It takes, at word offset OffsetInFile, Length words data from the file NameFile, and it maps them at the destination
address AbsoluteAddress.
Namefile can be a file name with extension or a full path name file.

MakeRom Dream S.A.S.

Rev. Sept 22, 2022 2 © 2022 Dream S.A.S.

Output
Button ‘Generate ROM files’ creates the .bin file(s) and a .log file (in case of errors, remarks).

From the following input description,

it generates:

‘Offset’ parameter

By default, it generates the file from address 0x0000. The generated files are to be used with external memory
programming device, that writes entire memory chip.
With the parameter ‘Offset’, the first generated file (named ROMfile00z.bin) will start at specified address for Offset:
If need to directly program the memory board, with ProgSam.

Remark:

- MakeRom does not support overlapping files: each entry definition must NOT overlap other entry definition.
It reports this situation as error.

- a firmware checksum is computed, at word location ‘end of firmware file -1’ (the last word).
- In case of target 3416, 3516, 3716 and 3816, the low part (the first 0x4000 words) of the firmware (i.e. for

the file set at address 0x0000) is not copied in the output file (mandatory for a secured firmware): it is
replaced by a gap area (using the value defined by $pattern).

- In case of target 2533, 2553, 2635, 2653 and using a specific firmware, that requires the use of the tool
94split4, MakeRom is doing the same job as 94split4 tool: Message “Detected 'FIRM5533' inside firmware.
Act as 94Split4.”

Firmware

@0

Demo

@0x1000

0

Soundbank @0x20:0000 Piano @0x80:0000

ROMfile00 ROMfile01

gap gap

gap

Firmware

@0

Demo

@0x1000

0

Soundbank @0x20:0000 Piano @0x80:0000

MakeRom Dream S.A.S.

Rev. Sept 22, 2022 3 © 2022 Dream S.A.S.

‘octal’ mode

By default, files-devices are 16 bits values data. Organized as follow:

In case of $octal used, files-devices are organized to read one 8 bits value from each two memory devices to
generate one 16 bits value data. Organized as follow:

Warning: File#-H must be written inside the first memory device connected to SAMx. File#-L must be written inside
the second memory device connected to SAMx

‘merge’ mode

Join together each element, according to their destination address, add padding (padding value sets with
$pattern). Directives Target, device size, start offset, checksum and octal mode are ignored.

‘nandflash’ mode

NandFlash structure is defined by its User data area size (directive $nandflashpageusersize) and its Spare data
area (directive $nandflashpagesparesize).
$devicesize is the total, in word, of all the User data area pages for the NandFlash device.
$programableamount is the amount (in percent) of blocks to receive data, on one NandFlash device. Default
value is 80; the remaining 20% are for bad blocks, system reserved blocks and pool of free blocks for wear-leveling
mechanism done by DREAM firmware. High limit of this parameter is 95%. See below

Due to the logical address detection done by DREAM firmware, by reading protected data with a valid DREAM
ECC inside block, NandFlash blocks that do not received data, must be left empty. Therefore:

- $pattern is used only for gap between entries files,
- It does not generate result file(s) with a size of $devicesize words.

The size is up to $devicesize * $programamount/100, which is the limit for each NandFlash result file.
If there are less data as entry, the result file is the size of the entry files and their gaps.

Requirements
NandFlash structure:
DREAM ECC requires User data area page to be 1k words and Spare data area page at least 32 words or 2k
words for User data area and at least 64 words for Spare data area.
Programmable amount of data (directive $programableamount) is, at maximum 95%: to have a minimum of pool
of free blocks for wear levelling and the system reserved blocks.

In this mode, $octal and $merge directives are ignored.

File#0 (16 bits value)

@0

File#1 (16 bits value)

@DeviceSize

File#2 (16 bits value)

@2*DeviceSize

File#0-H (8 bits value)

@0

File#0-L (8 bits value)

@0

File#1-H (8 bits value)

@2*DeviceSize

File#1-L (8 bits value)

@2*DeviceSize

MakeRom Dream S.A.S.

Rev. Sept 22, 2022 4 © 2022 Dream S.A.S.

Remark:
External programming softwares accept entry files as:

- Two files: One file (*.img) for User data part and one file (*.spr) for Spare data part.
- Or only one file, with User data area and Spare data area interlaced: file *.bin

The directive $nandflash will create separated files *.img & *.spr
The directive $nandflash spareinclude will create one interlaced file *.bin.

Important:

- The programming mode ‘skip bad block’ must be chosen in the external programming software.
- In case of 4kbyte page NandFlash, after programming data with the external programming software, a ‘Verify’
operation can NOT be directly used. Also the ‘detect bad block’ operation will report many physical block as bad.
Due to the Sam5x NandFlash controller added ECC area management, in case of 4k byte page, the ‘bad block
marker’ area of the NandFlash (located at the beginning of the Spare data area) is overlapped by the written data:
external programming software often checks the ‘bad block’ state of a block before reading it; Therefore, it will
report some written data blocks as ‘bad block’ but those blocks are good and written with the expected data.
For example, from an empty 4k NandFlash, with NO factory bad block, after writing the data, ‘Verify’ operation can
be used only if ‘detect bad block’ is disabled in the external programming software.
In the case of an empty 4k NandFlash, with factory bad block, after writing the data, ‘Verify’ operation can NOT be
used: it will detect block as bad but they have data inside. W ith ‘detect bad block’ disabled, it will read back bad
block as usefull data to compare with original data.
SAM5x firmware correctly detects the ‘bad block’ state for all physical blocks.
- in case of 2kbyte page NandFlash, after programming data with external programming software, ‘Verify’
operation and ‘detect bad block’ operation are usable and report accurate information.

How to have maximum data amount of 95%

A simple solution is to use as highest logical address value for data (where no more data after this address), to
95% of the total NandFlash size.
For example, a solution with two NandFlash of 8 Gbit each, with a block size of 256 kbyte, the highest logical
address value is 0x3C00:0000 in word (95% of 2*0x2000:0000, truncated to the near low multiple of block size
0x2:0000).

Information about GAP / padding area

Those areas have got the data defined by the directive $pattern.
When the generated MakeROM file is written to NandFlash, these areas are assumed to be data and ‘consume’
NandFlash blocks. Be sure to reduce the size of these GAP/padding area, as possible.

	Aim
	Input
	Directives
	Common entry

	Output
	‘Offset’ parameter
	‘octal’ mode
	‘merge’ mode
	‘nandflash’ mode
	Important:
	How to have maximum data amount of 95%
	Information about GAP / padding area

